| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | dyadmbl.2 |  |-  G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } | 
						
							| 3 |  | dyadmbl.3 |  |-  ( ph -> A C_ ran F ) | 
						
							| 4 | 1 2 3 | dyadmbllem |  |-  ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) | 
						
							| 5 |  | isfinite |  |-  ( G e. Fin <-> G ~< _om ) | 
						
							| 6 |  | iccf |  |-  [,] : ( RR* X. RR* ) --> ~P RR* | 
						
							| 7 |  | ffun |  |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) | 
						
							| 8 |  | funiunfv |  |-  ( Fun [,] -> U_ n e. G ( [,] ` n ) = U. ( [,] " G ) ) | 
						
							| 9 | 6 7 8 | mp2b |  |-  U_ n e. G ( [,] ` n ) = U. ( [,] " G ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ G e. Fin ) -> G e. Fin ) | 
						
							| 11 | 2 | ssrab3 |  |-  G C_ A | 
						
							| 12 | 11 3 | sstrid |  |-  ( ph -> G C_ ran F ) | 
						
							| 13 | 1 | dyadf |  |-  F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) | 
						
							| 14 |  | frn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ran F C_ ( <_ i^i ( RR X. RR ) ) | 
						
							| 16 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 17 | 15 16 | sstri |  |-  ran F C_ ( RR X. RR ) | 
						
							| 18 | 12 17 | sstrdi |  |-  ( ph -> G C_ ( RR X. RR ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ G e. Fin ) -> G C_ ( RR X. RR ) ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n e. ( RR X. RR ) ) | 
						
							| 21 |  | 1st2nd2 |  |-  ( n e. ( RR X. RR ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> n = <. ( 1st ` n ) , ( 2nd ` n ) >. ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) ) | 
						
							| 24 |  | df-ov |  |-  ( ( 1st ` n ) [,] ( 2nd ` n ) ) = ( [,] ` <. ( 1st ` n ) , ( 2nd ` n ) >. ) | 
						
							| 25 | 23 24 | eqtr4di |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) = ( ( 1st ` n ) [,] ( 2nd ` n ) ) ) | 
						
							| 26 |  | xp1st |  |-  ( n e. ( RR X. RR ) -> ( 1st ` n ) e. RR ) | 
						
							| 27 | 20 26 | syl |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 1st ` n ) e. RR ) | 
						
							| 28 |  | xp2nd |  |-  ( n e. ( RR X. RR ) -> ( 2nd ` n ) e. RR ) | 
						
							| 29 | 20 28 | syl |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( 2nd ` n ) e. RR ) | 
						
							| 30 |  | iccmbl |  |-  ( ( ( 1st ` n ) e. RR /\ ( 2nd ` n ) e. RR ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) | 
						
							| 31 | 27 29 30 | syl2anc |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( ( 1st ` n ) [,] ( 2nd ` n ) ) e. dom vol ) | 
						
							| 32 | 25 31 | eqeltrd |  |-  ( ( ( ph /\ G e. Fin ) /\ n e. G ) -> ( [,] ` n ) e. dom vol ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( ( ph /\ G e. Fin ) -> A. n e. G ( [,] ` n ) e. dom vol ) | 
						
							| 34 |  | finiunmbl |  |-  ( ( G e. Fin /\ A. n e. G ( [,] ` n ) e. dom vol ) -> U_ n e. G ( [,] ` n ) e. dom vol ) | 
						
							| 35 | 10 33 34 | syl2anc |  |-  ( ( ph /\ G e. Fin ) -> U_ n e. G ( [,] ` n ) e. dom vol ) | 
						
							| 36 | 9 35 | eqeltrrid |  |-  ( ( ph /\ G e. Fin ) -> U. ( [,] " G ) e. dom vol ) | 
						
							| 37 | 5 36 | sylan2br |  |-  ( ( ph /\ G ~< _om ) -> U. ( [,] " G ) e. dom vol ) | 
						
							| 38 |  | rnco2 |  |-  ran ( [,] o. f ) = ( [,] " ran f ) | 
						
							| 39 |  | f1ofo |  |-  ( f : NN -1-1-onto-> G -> f : NN -onto-> G ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -onto-> G ) | 
						
							| 41 |  | forn |  |-  ( f : NN -onto-> G -> ran f = G ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> ran f = G ) | 
						
							| 43 | 42 | imaeq2d |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> ( [,] " ran f ) = ( [,] " G ) ) | 
						
							| 44 | 38 43 | eqtrid |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> ran ( [,] o. f ) = ( [,] " G ) ) | 
						
							| 45 | 44 | unieqd |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) = U. ( [,] " G ) ) | 
						
							| 46 |  | f1of |  |-  ( f : NN -1-1-onto-> G -> f : NN --> G ) | 
						
							| 47 | 12 15 | sstrdi |  |-  ( ph -> G C_ ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 48 |  | fss |  |-  ( ( f : NN --> G /\ G C_ ( <_ i^i ( RR X. RR ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 49 | 46 47 48 | syl2anr |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 50 |  | fss |  |-  ( ( f : NN --> G /\ G C_ ran F ) -> f : NN --> ran F ) | 
						
							| 51 | 46 12 50 | syl2anr |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> ran F ) | 
						
							| 52 |  | simpl |  |-  ( ( a e. NN /\ b e. NN ) -> a e. NN ) | 
						
							| 53 |  | ffvelcdm |  |-  ( ( f : NN --> ran F /\ a e. NN ) -> ( f ` a ) e. ran F ) | 
						
							| 54 | 51 52 53 | syl2an |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. ran F ) | 
						
							| 55 |  | simpr |  |-  ( ( a e. NN /\ b e. NN ) -> b e. NN ) | 
						
							| 56 |  | ffvelcdm |  |-  ( ( f : NN --> ran F /\ b e. NN ) -> ( f ` b ) e. ran F ) | 
						
							| 57 | 51 55 56 | syl2an |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. ran F ) | 
						
							| 58 | 1 | dyaddisj |  |-  ( ( ( f ` a ) e. ran F /\ ( f ` b ) e. ran F ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 59 | 54 57 58 | syl2anc |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 60 |  | fveq2 |  |-  ( w = ( f ` b ) -> ( [,] ` w ) = ( [,] ` ( f ` b ) ) ) | 
						
							| 61 | 60 | sseq2d |  |-  ( w = ( f ` b ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) ) ) | 
						
							| 62 |  | eqeq2 |  |-  ( w = ( f ` b ) -> ( ( f ` a ) = w <-> ( f ` a ) = ( f ` b ) ) ) | 
						
							| 63 | 61 62 | imbi12d |  |-  ( w = ( f ` b ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) ) | 
						
							| 64 | 46 | adantl |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN --> G ) | 
						
							| 65 |  | ffvelcdm |  |-  ( ( f : NN --> G /\ a e. NN ) -> ( f ` a ) e. G ) | 
						
							| 66 | 64 52 65 | syl2an |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. G ) | 
						
							| 67 |  | fveq2 |  |-  ( z = ( f ` a ) -> ( [,] ` z ) = ( [,] ` ( f ` a ) ) ) | 
						
							| 68 | 67 | sseq1d |  |-  ( z = ( f ` a ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) ) ) | 
						
							| 69 |  | eqeq1 |  |-  ( z = ( f ` a ) -> ( z = w <-> ( f ` a ) = w ) ) | 
						
							| 70 | 68 69 | imbi12d |  |-  ( z = ( f ` a ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) | 
						
							| 71 | 70 | ralbidv |  |-  ( z = ( f ` a ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) | 
						
							| 72 | 71 2 | elrab2 |  |-  ( ( f ` a ) e. G <-> ( ( f ` a ) e. A /\ A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) ) | 
						
							| 73 | 72 | simprbi |  |-  ( ( f ` a ) e. G -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) | 
						
							| 74 | 66 73 | syl |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` a ) ) C_ ( [,] ` w ) -> ( f ` a ) = w ) ) | 
						
							| 75 |  | ffvelcdm |  |-  ( ( f : NN --> G /\ b e. NN ) -> ( f ` b ) e. G ) | 
						
							| 76 | 64 55 75 | syl2an |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. G ) | 
						
							| 77 | 11 76 | sselid |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` b ) e. A ) | 
						
							| 78 | 63 74 77 | rspcdva |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( f ` a ) = ( f ` b ) ) ) | 
						
							| 79 |  | f1of1 |  |-  ( f : NN -1-1-onto-> G -> f : NN -1-1-> G ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> f : NN -1-1-> G ) | 
						
							| 81 |  | f1fveq |  |-  ( ( f : NN -1-1-> G /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) | 
						
							| 82 | 80 81 | sylan |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) <-> a = b ) ) | 
						
							| 83 |  | orc |  |-  ( a = b -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 84 | 82 83 | biimtrdi |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( f ` a ) = ( f ` b ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) | 
						
							| 85 | 78 84 | syld |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) | 
						
							| 86 |  | fveq2 |  |-  ( w = ( f ` a ) -> ( [,] ` w ) = ( [,] ` ( f ` a ) ) ) | 
						
							| 87 | 86 | sseq2d |  |-  ( w = ( f ` a ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) ) ) | 
						
							| 88 |  | eqeq2 |  |-  ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` b ) = ( f ` a ) ) ) | 
						
							| 89 |  | eqcom |  |-  ( ( f ` b ) = ( f ` a ) <-> ( f ` a ) = ( f ` b ) ) | 
						
							| 90 | 88 89 | bitrdi |  |-  ( w = ( f ` a ) -> ( ( f ` b ) = w <-> ( f ` a ) = ( f ` b ) ) ) | 
						
							| 91 | 87 90 | imbi12d |  |-  ( w = ( f ` a ) -> ( ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) ) | 
						
							| 92 |  | fveq2 |  |-  ( z = ( f ` b ) -> ( [,] ` z ) = ( [,] ` ( f ` b ) ) ) | 
						
							| 93 | 92 | sseq1d |  |-  ( z = ( f ` b ) -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) ) ) | 
						
							| 94 |  | eqeq1 |  |-  ( z = ( f ` b ) -> ( z = w <-> ( f ` b ) = w ) ) | 
						
							| 95 | 93 94 | imbi12d |  |-  ( z = ( f ` b ) -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) | 
						
							| 96 | 95 | ralbidv |  |-  ( z = ( f ` b ) -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) | 
						
							| 97 | 96 2 | elrab2 |  |-  ( ( f ` b ) e. G <-> ( ( f ` b ) e. A /\ A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) ) | 
						
							| 98 | 97 | simprbi |  |-  ( ( f ` b ) e. G -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) | 
						
							| 99 | 76 98 | syl |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> A. w e. A ( ( [,] ` ( f ` b ) ) C_ ( [,] ` w ) -> ( f ` b ) = w ) ) | 
						
							| 100 | 11 66 | sselid |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( f ` a ) e. A ) | 
						
							| 101 | 91 99 100 | rspcdva |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( f ` a ) = ( f ` b ) ) ) | 
						
							| 102 | 101 84 | syld |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) | 
						
							| 103 |  | olc |  |-  ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 104 | 103 | a1i |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) | 
						
							| 105 | 85 102 104 | 3jaod |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( ( ( [,] ` ( f ` a ) ) C_ ( [,] ` ( f ` b ) ) \/ ( [,] ` ( f ` b ) ) C_ ( [,] ` ( f ` a ) ) \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) ) | 
						
							| 106 | 59 105 | mpd |  |-  ( ( ( ph /\ f : NN -1-1-onto-> G ) /\ ( a e. NN /\ b e. NN ) ) -> ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 107 | 106 | ralrimivva |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 108 |  | 2fveq3 |  |-  ( a = b -> ( (,) ` ( f ` a ) ) = ( (,) ` ( f ` b ) ) ) | 
						
							| 109 | 108 | disjor |  |-  ( Disj_ a e. NN ( (,) ` ( f ` a ) ) <-> A. a e. NN A. b e. NN ( a = b \/ ( ( (,) ` ( f ` a ) ) i^i ( (,) ` ( f ` b ) ) ) = (/) ) ) | 
						
							| 110 | 107 109 | sylibr |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> Disj_ a e. NN ( (,) ` ( f ` a ) ) ) | 
						
							| 111 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) | 
						
							| 112 | 49 110 111 | uniiccmbl |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ran ( [,] o. f ) e. dom vol ) | 
						
							| 113 | 45 112 | eqeltrrd |  |-  ( ( ph /\ f : NN -1-1-onto-> G ) -> U. ( [,] " G ) e. dom vol ) | 
						
							| 114 | 113 | ex |  |-  ( ph -> ( f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) | 
						
							| 115 | 114 | exlimdv |  |-  ( ph -> ( E. f f : NN -1-1-onto-> G -> U. ( [,] " G ) e. dom vol ) ) | 
						
							| 116 |  | nnenom |  |-  NN ~~ _om | 
						
							| 117 |  | ensym |  |-  ( G ~~ _om -> _om ~~ G ) | 
						
							| 118 |  | entr |  |-  ( ( NN ~~ _om /\ _om ~~ G ) -> NN ~~ G ) | 
						
							| 119 | 116 117 118 | sylancr |  |-  ( G ~~ _om -> NN ~~ G ) | 
						
							| 120 |  | bren |  |-  ( NN ~~ G <-> E. f f : NN -1-1-onto-> G ) | 
						
							| 121 | 119 120 | sylib |  |-  ( G ~~ _om -> E. f f : NN -1-1-onto-> G ) | 
						
							| 122 | 115 121 | impel |  |-  ( ( ph /\ G ~~ _om ) -> U. ( [,] " G ) e. dom vol ) | 
						
							| 123 |  | reex |  |-  RR e. _V | 
						
							| 124 | 123 123 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 125 | 124 | inex2 |  |-  ( <_ i^i ( RR X. RR ) ) e. _V | 
						
							| 126 | 125 15 | ssexi |  |-  ran F e. _V | 
						
							| 127 |  | ssdomg |  |-  ( ran F e. _V -> ( G C_ ran F -> G ~<_ ran F ) ) | 
						
							| 128 | 126 12 127 | mpsyl |  |-  ( ph -> G ~<_ ran F ) | 
						
							| 129 |  | omelon |  |-  _om e. On | 
						
							| 130 |  | znnen |  |-  ZZ ~~ NN | 
						
							| 131 | 130 116 | entri |  |-  ZZ ~~ _om | 
						
							| 132 |  | nn0ennn |  |-  NN0 ~~ NN | 
						
							| 133 | 132 116 | entri |  |-  NN0 ~~ _om | 
						
							| 134 |  | xpen |  |-  ( ( ZZ ~~ _om /\ NN0 ~~ _om ) -> ( ZZ X. NN0 ) ~~ ( _om X. _om ) ) | 
						
							| 135 | 131 133 134 | mp2an |  |-  ( ZZ X. NN0 ) ~~ ( _om X. _om ) | 
						
							| 136 |  | xpomen |  |-  ( _om X. _om ) ~~ _om | 
						
							| 137 | 135 136 | entri |  |-  ( ZZ X. NN0 ) ~~ _om | 
						
							| 138 | 137 | ensymi |  |-  _om ~~ ( ZZ X. NN0 ) | 
						
							| 139 |  | isnumi |  |-  ( ( _om e. On /\ _om ~~ ( ZZ X. NN0 ) ) -> ( ZZ X. NN0 ) e. dom card ) | 
						
							| 140 | 129 138 139 | mp2an |  |-  ( ZZ X. NN0 ) e. dom card | 
						
							| 141 |  | ffn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> F Fn ( ZZ X. NN0 ) ) | 
						
							| 142 | 13 141 | ax-mp |  |-  F Fn ( ZZ X. NN0 ) | 
						
							| 143 |  | dffn4 |  |-  ( F Fn ( ZZ X. NN0 ) <-> F : ( ZZ X. NN0 ) -onto-> ran F ) | 
						
							| 144 | 142 143 | mpbi |  |-  F : ( ZZ X. NN0 ) -onto-> ran F | 
						
							| 145 |  | fodomnum |  |-  ( ( ZZ X. NN0 ) e. dom card -> ( F : ( ZZ X. NN0 ) -onto-> ran F -> ran F ~<_ ( ZZ X. NN0 ) ) ) | 
						
							| 146 | 140 144 145 | mp2 |  |-  ran F ~<_ ( ZZ X. NN0 ) | 
						
							| 147 |  | domentr |  |-  ( ( ran F ~<_ ( ZZ X. NN0 ) /\ ( ZZ X. NN0 ) ~~ _om ) -> ran F ~<_ _om ) | 
						
							| 148 | 146 137 147 | mp2an |  |-  ran F ~<_ _om | 
						
							| 149 |  | domtr |  |-  ( ( G ~<_ ran F /\ ran F ~<_ _om ) -> G ~<_ _om ) | 
						
							| 150 | 128 148 149 | sylancl |  |-  ( ph -> G ~<_ _om ) | 
						
							| 151 |  | brdom2 |  |-  ( G ~<_ _om <-> ( G ~< _om \/ G ~~ _om ) ) | 
						
							| 152 | 150 151 | sylib |  |-  ( ph -> ( G ~< _om \/ G ~~ _om ) ) | 
						
							| 153 | 37 122 152 | mpjaodan |  |-  ( ph -> U. ( [,] " G ) e. dom vol ) | 
						
							| 154 | 4 153 | eqeltrd |  |-  ( ph -> U. ( [,] " A ) e. dom vol ) |