Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
2 |
|
dyadmbl.2 |
|- G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } |
3 |
|
dyadmbl.3 |
|- ( ph -> A C_ ran F ) |
4 |
|
eluni2 |
|- ( a e. U. ( [,] " A ) <-> E. i e. ( [,] " A ) a e. i ) |
5 |
|
iccf |
|- [,] : ( RR* X. RR* ) --> ~P RR* |
6 |
|
ffn |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
7 |
5 6
|
ax-mp |
|- [,] Fn ( RR* X. RR* ) |
8 |
1
|
dyadf |
|- F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) |
9 |
|
frn |
|- ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) |
10 |
8 9
|
ax-mp |
|- ran F C_ ( <_ i^i ( RR X. RR ) ) |
11 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
12 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
13 |
11 12
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
14 |
10 13
|
sstri |
|- ran F C_ ( RR* X. RR* ) |
15 |
3 14
|
sstrdi |
|- ( ph -> A C_ ( RR* X. RR* ) ) |
16 |
|
eleq2 |
|- ( i = ( [,] ` t ) -> ( a e. i <-> a e. ( [,] ` t ) ) ) |
17 |
16
|
rexima |
|- ( ( [,] Fn ( RR* X. RR* ) /\ A C_ ( RR* X. RR* ) ) -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) |
18 |
7 15 17
|
sylancr |
|- ( ph -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) |
19 |
|
ssrab2 |
|- { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ A |
20 |
3
|
adantr |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> A C_ ran F ) |
21 |
19 20
|
sstrid |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F ) |
22 |
|
simprl |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> t e. A ) |
23 |
|
ssid |
|- ( [,] ` t ) C_ ( [,] ` t ) |
24 |
|
fveq2 |
|- ( a = t -> ( [,] ` a ) = ( [,] ` t ) ) |
25 |
24
|
sseq2d |
|- ( a = t -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` t ) ) ) |
26 |
25
|
rspcev |
|- ( ( t e. A /\ ( [,] ` t ) C_ ( [,] ` t ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
27 |
22 23 26
|
sylancl |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
28 |
|
rabn0 |
|- ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) <-> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) |
29 |
27 28
|
sylibr |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) |
30 |
1
|
dyadmax |
|- ( ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F /\ { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
31 |
21 29 30
|
syl2anc |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
32 |
|
fveq2 |
|- ( a = m -> ( [,] ` a ) = ( [,] ` m ) ) |
33 |
32
|
sseq2d |
|- ( a = m -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` m ) ) ) |
34 |
33
|
elrab |
|- ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) |
35 |
|
simprlr |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` t ) C_ ( [,] ` m ) ) |
36 |
|
simplrr |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` t ) ) |
37 |
35 36
|
sseldd |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` m ) ) |
38 |
|
simprll |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. A ) |
39 |
|
fveq2 |
|- ( a = w -> ( [,] ` a ) = ( [,] ` w ) ) |
40 |
39
|
sseq2d |
|- ( a = w -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
41 |
40
|
elrab |
|- ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) ) |
42 |
41
|
imbi1i |
|- ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
43 |
|
impexp |
|- ( ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
44 |
42 43
|
bitri |
|- ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
45 |
|
impexp |
|- ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) <-> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
46 |
|
sstr2 |
|- ( ( [,] ` t ) C_ ( [,] ` m ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
47 |
46
|
ad2antll |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) |
48 |
47
|
ancrd |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) ) ) |
49 |
48
|
imim1d |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
50 |
45 49
|
syl5bir |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
51 |
50
|
imim2d |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
52 |
44 51
|
syl5bi |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) |
53 |
52
|
ralimdv2 |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
54 |
53
|
impr |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) |
55 |
|
fveq2 |
|- ( z = m -> ( [,] ` z ) = ( [,] ` m ) ) |
56 |
55
|
sseq1d |
|- ( z = m -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` m ) C_ ( [,] ` w ) ) ) |
57 |
|
equequ1 |
|- ( z = m -> ( z = w <-> m = w ) ) |
58 |
56 57
|
imbi12d |
|- ( z = m -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
59 |
58
|
ralbidv |
|- ( z = m -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
60 |
59 2
|
elrab2 |
|- ( m e. G <-> ( m e. A /\ A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) |
61 |
38 54 60
|
sylanbrc |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. G ) |
62 |
|
ffun |
|- ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) |
63 |
5 62
|
ax-mp |
|- Fun [,] |
64 |
2
|
ssrab3 |
|- G C_ A |
65 |
64 15
|
sstrid |
|- ( ph -> G C_ ( RR* X. RR* ) ) |
66 |
5
|
fdmi |
|- dom [,] = ( RR* X. RR* ) |
67 |
65 66
|
sseqtrrdi |
|- ( ph -> G C_ dom [,] ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> G C_ dom [,] ) |
69 |
|
funfvima2 |
|- ( ( Fun [,] /\ G C_ dom [,] ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) |
70 |
63 68 69
|
sylancr |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) |
71 |
61 70
|
mpd |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` m ) e. ( [,] " G ) ) |
72 |
|
elunii |
|- ( ( a e. ( [,] ` m ) /\ ( [,] ` m ) e. ( [,] " G ) ) -> a e. U. ( [,] " G ) ) |
73 |
37 71 72
|
syl2anc |
|- ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. U. ( [,] " G ) ) |
74 |
73
|
exp32 |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) |
75 |
34 74
|
syl5bi |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) |
76 |
75
|
rexlimdv |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) |
77 |
31 76
|
mpd |
|- ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> a e. U. ( [,] " G ) ) |
78 |
77
|
rexlimdvaa |
|- ( ph -> ( E. t e. A a e. ( [,] ` t ) -> a e. U. ( [,] " G ) ) ) |
79 |
18 78
|
sylbid |
|- ( ph -> ( E. i e. ( [,] " A ) a e. i -> a e. U. ( [,] " G ) ) ) |
80 |
4 79
|
syl5bi |
|- ( ph -> ( a e. U. ( [,] " A ) -> a e. U. ( [,] " G ) ) ) |
81 |
80
|
ssrdv |
|- ( ph -> U. ( [,] " A ) C_ U. ( [,] " G ) ) |
82 |
|
imass2 |
|- ( G C_ A -> ( [,] " G ) C_ ( [,] " A ) ) |
83 |
64 82
|
ax-mp |
|- ( [,] " G ) C_ ( [,] " A ) |
84 |
|
uniss |
|- ( ( [,] " G ) C_ ( [,] " A ) -> U. ( [,] " G ) C_ U. ( [,] " A ) ) |
85 |
83 84
|
mp1i |
|- ( ph -> U. ( [,] " G ) C_ U. ( [,] " A ) ) |
86 |
81 85
|
eqssd |
|- ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |