| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | dyadmbl.2 |  |-  G = { z e. A | A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) } | 
						
							| 3 |  | dyadmbl.3 |  |-  ( ph -> A C_ ran F ) | 
						
							| 4 |  | eluni2 |  |-  ( a e. U. ( [,] " A ) <-> E. i e. ( [,] " A ) a e. i ) | 
						
							| 5 |  | iccf |  |-  [,] : ( RR* X. RR* ) --> ~P RR* | 
						
							| 6 |  | ffn |  |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  [,] Fn ( RR* X. RR* ) | 
						
							| 8 | 1 | dyadf |  |-  F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) | 
						
							| 9 |  | frn |  |-  ( F : ( ZZ X. NN0 ) --> ( <_ i^i ( RR X. RR ) ) -> ran F C_ ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ran F C_ ( <_ i^i ( RR X. RR ) ) | 
						
							| 11 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 12 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 13 | 11 12 | sstri |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) | 
						
							| 14 | 10 13 | sstri |  |-  ran F C_ ( RR* X. RR* ) | 
						
							| 15 | 3 14 | sstrdi |  |-  ( ph -> A C_ ( RR* X. RR* ) ) | 
						
							| 16 |  | eleq2 |  |-  ( i = ( [,] ` t ) -> ( a e. i <-> a e. ( [,] ` t ) ) ) | 
						
							| 17 | 16 | rexima |  |-  ( ( [,] Fn ( RR* X. RR* ) /\ A C_ ( RR* X. RR* ) ) -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) | 
						
							| 18 | 7 15 17 | sylancr |  |-  ( ph -> ( E. i e. ( [,] " A ) a e. i <-> E. t e. A a e. ( [,] ` t ) ) ) | 
						
							| 19 |  | ssrab2 |  |-  { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ A | 
						
							| 20 | 3 | adantr |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> A C_ ran F ) | 
						
							| 21 | 19 20 | sstrid |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F ) | 
						
							| 22 |  | simprl |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> t e. A ) | 
						
							| 23 |  | ssid |  |-  ( [,] ` t ) C_ ( [,] ` t ) | 
						
							| 24 |  | fveq2 |  |-  ( a = t -> ( [,] ` a ) = ( [,] ` t ) ) | 
						
							| 25 | 24 | sseq2d |  |-  ( a = t -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` t ) ) ) | 
						
							| 26 | 25 | rspcev |  |-  ( ( t e. A /\ ( [,] ` t ) C_ ( [,] ` t ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) | 
						
							| 27 | 22 23 26 | sylancl |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) | 
						
							| 28 |  | rabn0 |  |-  ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) <-> E. a e. A ( [,] ` t ) C_ ( [,] ` a ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) | 
						
							| 30 | 1 | dyadmax |  |-  ( ( { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } C_ ran F /\ { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } =/= (/) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) | 
						
							| 31 | 21 29 30 | syl2anc |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) | 
						
							| 32 |  | fveq2 |  |-  ( a = m -> ( [,] ` a ) = ( [,] ` m ) ) | 
						
							| 33 | 32 | sseq2d |  |-  ( a = m -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` m ) ) ) | 
						
							| 34 | 33 | elrab |  |-  ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) | 
						
							| 35 |  | simprlr |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` t ) C_ ( [,] ` m ) ) | 
						
							| 36 |  | simplrr |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` t ) ) | 
						
							| 37 | 35 36 | sseldd |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. ( [,] ` m ) ) | 
						
							| 38 |  | simprll |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. A ) | 
						
							| 39 |  | fveq2 |  |-  ( a = w -> ( [,] ` a ) = ( [,] ` w ) ) | 
						
							| 40 | 39 | sseq2d |  |-  ( a = w -> ( ( [,] ` t ) C_ ( [,] ` a ) <-> ( [,] ` t ) C_ ( [,] ` w ) ) ) | 
						
							| 41 | 40 | elrab |  |-  ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } <-> ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) ) | 
						
							| 42 | 41 | imbi1i |  |-  ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 43 |  | impexp |  |-  ( ( ( w e. A /\ ( [,] ` t ) C_ ( [,] ` w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) | 
						
							| 44 | 42 43 | bitri |  |-  ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) <-> ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) | 
						
							| 45 |  | impexp |  |-  ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) <-> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 46 |  | sstr2 |  |-  ( ( [,] ` t ) C_ ( [,] ` m ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) | 
						
							| 47 | 46 | ad2antll |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( [,] ` t ) C_ ( [,] ` w ) ) ) | 
						
							| 48 | 47 | ancrd |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) ) ) | 
						
							| 49 | 48 | imim1d |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( ( [,] ` t ) C_ ( [,] ` w ) /\ ( [,] ` m ) C_ ( [,] ` w ) ) -> m = w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 50 | 45 49 | biimtrrid |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 51 | 50 | imim2d |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. A -> ( ( [,] ` t ) C_ ( [,] ` w ) -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) | 
						
							| 52 | 44 51 | biimtrid |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( ( w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) -> ( w e. A -> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) ) | 
						
							| 53 | 52 | ralimdv2 |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 54 | 53 | impr |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) | 
						
							| 55 |  | fveq2 |  |-  ( z = m -> ( [,] ` z ) = ( [,] ` m ) ) | 
						
							| 56 | 55 | sseq1d |  |-  ( z = m -> ( ( [,] ` z ) C_ ( [,] ` w ) <-> ( [,] ` m ) C_ ( [,] ` w ) ) ) | 
						
							| 57 |  | equequ1 |  |-  ( z = m -> ( z = w <-> m = w ) ) | 
						
							| 58 | 56 57 | imbi12d |  |-  ( z = m -> ( ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 59 | 58 | ralbidv |  |-  ( z = m -> ( A. w e. A ( ( [,] ` z ) C_ ( [,] ` w ) -> z = w ) <-> A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 60 | 59 2 | elrab2 |  |-  ( m e. G <-> ( m e. A /\ A. w e. A ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) | 
						
							| 61 | 38 54 60 | sylanbrc |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> m e. G ) | 
						
							| 62 |  | ffun |  |-  ( [,] : ( RR* X. RR* ) --> ~P RR* -> Fun [,] ) | 
						
							| 63 | 5 62 | ax-mp |  |-  Fun [,] | 
						
							| 64 | 2 | ssrab3 |  |-  G C_ A | 
						
							| 65 | 64 15 | sstrid |  |-  ( ph -> G C_ ( RR* X. RR* ) ) | 
						
							| 66 | 5 | fdmi |  |-  dom [,] = ( RR* X. RR* ) | 
						
							| 67 | 65 66 | sseqtrrdi |  |-  ( ph -> G C_ dom [,] ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> G C_ dom [,] ) | 
						
							| 69 |  | funfvima2 |  |-  ( ( Fun [,] /\ G C_ dom [,] ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) | 
						
							| 70 | 63 68 69 | sylancr |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( m e. G -> ( [,] ` m ) e. ( [,] " G ) ) ) | 
						
							| 71 | 61 70 | mpd |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> ( [,] ` m ) e. ( [,] " G ) ) | 
						
							| 72 |  | elunii |  |-  ( ( a e. ( [,] ` m ) /\ ( [,] ` m ) e. ( [,] " G ) ) -> a e. U. ( [,] " G ) ) | 
						
							| 73 | 37 71 72 | syl2anc |  |-  ( ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) /\ ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) /\ A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) ) ) -> a e. U. ( [,] " G ) ) | 
						
							| 74 | 73 | exp32 |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( ( m e. A /\ ( [,] ` t ) C_ ( [,] ` m ) ) -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) | 
						
							| 75 | 34 74 | biimtrid |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } -> ( A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) ) | 
						
							| 76 | 75 | rexlimdv |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> ( E. m e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } A. w e. { a e. A | ( [,] ` t ) C_ ( [,] ` a ) } ( ( [,] ` m ) C_ ( [,] ` w ) -> m = w ) -> a e. U. ( [,] " G ) ) ) | 
						
							| 77 | 31 76 | mpd |  |-  ( ( ph /\ ( t e. A /\ a e. ( [,] ` t ) ) ) -> a e. U. ( [,] " G ) ) | 
						
							| 78 | 77 | rexlimdvaa |  |-  ( ph -> ( E. t e. A a e. ( [,] ` t ) -> a e. U. ( [,] " G ) ) ) | 
						
							| 79 | 18 78 | sylbid |  |-  ( ph -> ( E. i e. ( [,] " A ) a e. i -> a e. U. ( [,] " G ) ) ) | 
						
							| 80 | 4 79 | biimtrid |  |-  ( ph -> ( a e. U. ( [,] " A ) -> a e. U. ( [,] " G ) ) ) | 
						
							| 81 | 80 | ssrdv |  |-  ( ph -> U. ( [,] " A ) C_ U. ( [,] " G ) ) | 
						
							| 82 |  | imass2 |  |-  ( G C_ A -> ( [,] " G ) C_ ( [,] " A ) ) | 
						
							| 83 | 64 82 | ax-mp |  |-  ( [,] " G ) C_ ( [,] " A ) | 
						
							| 84 |  | uniss |  |-  ( ( [,] " G ) C_ ( [,] " A ) -> U. ( [,] " G ) C_ U. ( [,] " A ) ) | 
						
							| 85 | 83 84 | mp1i |  |-  ( ph -> U. ( [,] " G ) C_ U. ( [,] " A ) ) | 
						
							| 86 | 81 85 | eqssd |  |-  ( ph -> U. ( [,] " A ) = U. ( [,] " G ) ) |