| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 | 1 | dyadval |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) | 
						
							| 3 | 2 | fveq2d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) ) | 
						
							| 4 |  | df-ov |  |-  ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) | 
						
							| 5 | 3 4 | eqtr4di |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) ) | 
						
							| 7 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 8 |  | 2nn |  |-  2 e. NN | 
						
							| 9 |  | nnexpcl |  |-  ( ( 2 e. NN /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) | 
						
							| 10 | 8 9 | mpan |  |-  ( B e. NN0 -> ( 2 ^ B ) e. NN ) | 
						
							| 11 |  | nndivre |  |-  ( ( A e. RR /\ ( 2 ^ B ) e. NN ) -> ( A / ( 2 ^ B ) ) e. RR ) | 
						
							| 12 | 7 10 11 | syl2an |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) e. RR ) | 
						
							| 13 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 14 | 7 13 | syl |  |-  ( A e. ZZ -> ( A + 1 ) e. RR ) | 
						
							| 15 |  | nndivre |  |-  ( ( ( A + 1 ) e. RR /\ ( 2 ^ B ) e. NN ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) | 
						
							| 16 | 14 10 15 | syl2an |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) | 
						
							| 17 | 7 | adantr |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> A e. RR ) | 
						
							| 18 | 17 | lep1d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> A <_ ( A + 1 ) ) | 
						
							| 19 | 17 13 | syl |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. RR ) | 
						
							| 20 | 10 | adantl |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) | 
						
							| 21 | 20 | nnred |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. RR ) | 
						
							| 22 | 20 | nngt0d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> 0 < ( 2 ^ B ) ) | 
						
							| 23 |  | lediv1 |  |-  ( ( A e. RR /\ ( A + 1 ) e. RR /\ ( ( 2 ^ B ) e. RR /\ 0 < ( 2 ^ B ) ) ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) | 
						
							| 24 | 17 19 21 22 23 | syl112anc |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) | 
						
							| 25 | 18 24 | mpbid |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) | 
						
							| 26 |  | ovolicc |  |-  ( ( ( A / ( 2 ^ B ) ) e. RR /\ ( ( A + 1 ) / ( 2 ^ B ) ) e. RR /\ ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) | 
						
							| 27 | 12 16 25 26 | syl3anc |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) | 
						
							| 28 | 19 | recnd |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. CC ) | 
						
							| 29 | 17 | recnd |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> A e. CC ) | 
						
							| 30 | 21 | recnd |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. CC ) | 
						
							| 31 | 20 | nnne0d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) =/= 0 ) | 
						
							| 32 | 28 29 30 31 | divsubdird |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) | 
						
							| 33 |  | ax-1cn |  |-  1 e. CC | 
						
							| 34 |  | pncan2 |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) | 
						
							| 35 | 29 33 34 | sylancl |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) - A ) = 1 ) | 
						
							| 36 | 35 | oveq1d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( 1 / ( 2 ^ B ) ) ) | 
						
							| 37 | 32 36 | eqtr3d |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) = ( 1 / ( 2 ^ B ) ) ) | 
						
							| 38 | 6 27 37 | 3eqtrd |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |