Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
2 |
1
|
dyadval |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
3 |
2
|
fveq2d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) ) |
4 |
|
df-ov |
|- ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) = ( [,] ` <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
5 |
3 4
|
eqtr4di |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( [,] ` ( A F B ) ) = ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
6 |
5
|
fveq2d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) ) |
7 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
8 |
|
2nn |
|- 2 e. NN |
9 |
|
nnexpcl |
|- ( ( 2 e. NN /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) |
10 |
8 9
|
mpan |
|- ( B e. NN0 -> ( 2 ^ B ) e. NN ) |
11 |
|
nndivre |
|- ( ( A e. RR /\ ( 2 ^ B ) e. NN ) -> ( A / ( 2 ^ B ) ) e. RR ) |
12 |
7 10 11
|
syl2an |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) e. RR ) |
13 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
14 |
7 13
|
syl |
|- ( A e. ZZ -> ( A + 1 ) e. RR ) |
15 |
|
nndivre |
|- ( ( ( A + 1 ) e. RR /\ ( 2 ^ B ) e. NN ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) |
16 |
14 10 15
|
syl2an |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) / ( 2 ^ B ) ) e. RR ) |
17 |
7
|
adantr |
|- ( ( A e. ZZ /\ B e. NN0 ) -> A e. RR ) |
18 |
17
|
lep1d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> A <_ ( A + 1 ) ) |
19 |
17 13
|
syl |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. RR ) |
20 |
10
|
adantl |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. NN ) |
21 |
20
|
nnred |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. RR ) |
22 |
20
|
nngt0d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> 0 < ( 2 ^ B ) ) |
23 |
|
lediv1 |
|- ( ( A e. RR /\ ( A + 1 ) e. RR /\ ( ( 2 ^ B ) e. RR /\ 0 < ( 2 ^ B ) ) ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
24 |
17 19 21 22 23
|
syl112anc |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) ) |
25 |
18 24
|
mpbid |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) |
26 |
|
ovolicc |
|- ( ( ( A / ( 2 ^ B ) ) e. RR /\ ( ( A + 1 ) / ( 2 ^ B ) ) e. RR /\ ( A / ( 2 ^ B ) ) <_ ( ( A + 1 ) / ( 2 ^ B ) ) ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
27 |
12 16 25 26
|
syl3anc |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( ( A / ( 2 ^ B ) ) [,] ( ( A + 1 ) / ( 2 ^ B ) ) ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
28 |
19
|
recnd |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A + 1 ) e. CC ) |
29 |
17
|
recnd |
|- ( ( A e. ZZ /\ B e. NN0 ) -> A e. CC ) |
30 |
21
|
recnd |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) e. CC ) |
31 |
20
|
nnne0d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( 2 ^ B ) =/= 0 ) |
32 |
28 29 30 31
|
divsubdird |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) ) |
33 |
|
ax-1cn |
|- 1 e. CC |
34 |
|
pncan2 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - A ) = 1 ) |
35 |
29 33 34
|
sylancl |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( A + 1 ) - A ) = 1 ) |
36 |
35
|
oveq1d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) - A ) / ( 2 ^ B ) ) = ( 1 / ( 2 ^ B ) ) ) |
37 |
32 36
|
eqtr3d |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A + 1 ) / ( 2 ^ B ) ) - ( A / ( 2 ^ B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |
38 |
6 27 37
|
3eqtrd |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( vol* ` ( [,] ` ( A F B ) ) ) = ( 1 / ( 2 ^ B ) ) ) |