Step |
Hyp |
Ref |
Expression |
1 |
|
dyadmbl.1 |
|- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
2 |
|
id |
|- ( x = A -> x = A ) |
3 |
|
oveq2 |
|- ( y = B -> ( 2 ^ y ) = ( 2 ^ B ) ) |
4 |
2 3
|
oveqan12d |
|- ( ( x = A /\ y = B ) -> ( x / ( 2 ^ y ) ) = ( A / ( 2 ^ B ) ) ) |
5 |
|
oveq1 |
|- ( x = A -> ( x + 1 ) = ( A + 1 ) ) |
6 |
5 3
|
oveqan12d |
|- ( ( x = A /\ y = B ) -> ( ( x + 1 ) / ( 2 ^ y ) ) = ( ( A + 1 ) / ( 2 ^ B ) ) ) |
7 |
4 6
|
opeq12d |
|- ( ( x = A /\ y = B ) -> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |
8 |
|
opex |
|- <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. e. _V |
9 |
7 1 8
|
ovmpoa |
|- ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |