| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  |-  F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) | 
						
							| 2 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 3 |  | oveq2 |  |-  ( y = B -> ( 2 ^ y ) = ( 2 ^ B ) ) | 
						
							| 4 | 2 3 | oveqan12d |  |-  ( ( x = A /\ y = B ) -> ( x / ( 2 ^ y ) ) = ( A / ( 2 ^ B ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = A -> ( x + 1 ) = ( A + 1 ) ) | 
						
							| 6 | 5 3 | oveqan12d |  |-  ( ( x = A /\ y = B ) -> ( ( x + 1 ) / ( 2 ^ y ) ) = ( ( A + 1 ) / ( 2 ^ B ) ) ) | 
						
							| 7 | 4 6 | opeq12d |  |-  ( ( x = A /\ y = B ) -> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) | 
						
							| 8 |  | opex |  |-  <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. e. _V | 
						
							| 9 | 7 1 8 | ovmpoa |  |-  ( ( A e. ZZ /\ B e. NN0 ) -> ( A F B ) = <. ( A / ( 2 ^ B ) ) , ( ( A + 1 ) / ( 2 ^ B ) ) >. ) |