Metamath Proof Explorer


Theorem e001

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e001.1
|- ph
e001.2
|- ps
e001.3
|- (. ch ->. th ).
e001.4
|- ( ph -> ( ps -> ( th -> ta ) ) )
Assertion e001
|- (. ch ->. ta ).

Proof

Step Hyp Ref Expression
1 e001.1
 |-  ph
2 e001.2
 |-  ps
3 e001.3
 |-  (. ch ->. th ).
4 e001.4
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
5 1 vd01
 |-  (. ch ->. ph ).
6 2 vd01
 |-  (. ch ->. ps ).
7 5 6 3 4 e111
 |-  (. ch ->. ta ).