Metamath Proof Explorer


Theorem e01

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e01.1
|- ph
e01.2
|- (. ps ->. ch ).
e01.3
|- ( ph -> ( ch -> th ) )
Assertion e01
|- (. ps ->. th ).

Proof

Step Hyp Ref Expression
1 e01.1
 |-  ph
2 e01.2
 |-  (. ps ->. ch ).
3 e01.3
 |-  ( ph -> ( ch -> th ) )
4 1 vd01
 |-  (. ps ->. ph ).
5 4 2 3 e11
 |-  (. ps ->. th ).