Metamath Proof Explorer


Theorem e011

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e011.1
|- ph
e011.2
|- (. ps ->. ch ).
e011.3
|- (. ps ->. th ).
e011.4
|- ( ph -> ( ch -> ( th -> ta ) ) )
Assertion e011
|- (. ps ->. ta ).

Proof

Step Hyp Ref Expression
1 e011.1
 |-  ph
2 e011.2
 |-  (. ps ->. ch ).
3 e011.3
 |-  (. ps ->. th ).
4 e011.4
 |-  ( ph -> ( ch -> ( th -> ta ) ) )
5 1 vd01
 |-  (. ps ->. ph ).
6 5 2 3 4 e111
 |-  (. ps ->. ta ).