Metamath Proof Explorer


Theorem e012

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e012.1
|- ph
e012.2
|- (. ps ->. ch ).
e012.3
|- (. ps ,. th ->. ta ).
e012.4
|- ( ph -> ( ch -> ( ta -> et ) ) )
Assertion e012
|- (. ps ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e012.1
 |-  ph
2 e012.2
 |-  (. ps ->. ch ).
3 e012.3
 |-  (. ps ,. th ->. ta ).
4 e012.4
 |-  ( ph -> ( ch -> ( ta -> et ) ) )
5 1 vd01
 |-  (. ps ->. ph ).
6 5 2 3 4 e112
 |-  (. ps ,. th ->. et ).