Metamath Proof Explorer


Theorem e020

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e020.1
|- ph
e020.2
|- (. ps ,. ch ->. th ).
e020.3
|- ta
e020.4
|- ( ph -> ( th -> ( ta -> et ) ) )
Assertion e020
|- (. ps ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e020.1
 |-  ph
2 e020.2
 |-  (. ps ,. ch ->. th ).
3 e020.3
 |-  ta
4 e020.4
 |-  ( ph -> ( th -> ( ta -> et ) ) )
5 1 vd02
 |-  (. ps ,. ch ->. ph ).
6 3 vd02
 |-  (. ps ,. ch ->. ta ).
7 5 2 6 4 e222
 |-  (. ps ,. ch ->. et ).