Description: Conjunction form of e02 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e02an.1 | |- ph | |
| e02an.2 | |- (. ps ,. ch ->. th ). | ||
| e02an.3 | |- ( ( ph /\ th ) -> ta ) | ||
| Assertion | e02an | |- (. ps ,. ch ->. ta ). | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e02an.1 | |- ph | |
| 2 | e02an.2 | |- (. ps ,. ch ->. th ). | |
| 3 | e02an.3 | |- ( ( ph /\ th ) -> ta ) | |
| 4 | 3 | ex | |- ( ph -> ( th -> ta ) ) | 
| 5 | 1 2 4 | e02 | |- (. ps ,. ch ->. ta ). |