Metamath Proof Explorer


Theorem e03

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e03.1
|- ph
e03.2
|- (. ps ,. ch ,. th ->. ta ).
e03.3
|- ( ph -> ( ta -> et ) )
Assertion e03
|- (. ps ,. ch ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e03.1
 |-  ph
2 e03.2
 |-  (. ps ,. ch ,. th ->. ta ).
3 e03.3
 |-  ( ph -> ( ta -> et ) )
4 1 vd03
 |-  (. ps ,. ch ,. th ->. ph ).
5 4 2 3 e33
 |-  (. ps ,. ch ,. th ->. et ).