Metamath Proof Explorer


Theorem e10

Description: A virtual deduction elimination rule (see mpisyl ). (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e10.1
|- (. ph ->. ps ).
e10.2
|- ch
e10.3
|- ( ps -> ( ch -> th ) )
Assertion e10
|- (. ph ->. th ).

Proof

Step Hyp Ref Expression
1 e10.1
 |-  (. ph ->. ps ).
2 e10.2
 |-  ch
3 e10.3
 |-  ( ps -> ( ch -> th ) )
4 2 vd01
 |-  (. ph ->. ch ).
5 1 4 3 e11
 |-  (. ph ->. th ).