Metamath Proof Explorer


Theorem e101

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e101.1
|- (. ph ->. ps ).
e101.2
|- ch
e101.3
|- (. ph ->. th ).
e101.4
|- ( ps -> ( ch -> ( th -> ta ) ) )
Assertion e101
|- (. ph ->. ta ).

Proof

Step Hyp Ref Expression
1 e101.1
 |-  (. ph ->. ps ).
2 e101.2
 |-  ch
3 e101.3
 |-  (. ph ->. th ).
4 e101.4
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
5 2 vd01
 |-  (. ph ->. ch ).
6 1 5 3 4 e111
 |-  (. ph ->. ta ).