Metamath Proof Explorer


Theorem e102

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e102.1
|- (. ph ->. ps ).
e102.2
|- ch
e102.3
|- (. ph ,. th ->. ta ).
e102.4
|- ( ps -> ( ch -> ( ta -> et ) ) )
Assertion e102
|- (. ph ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e102.1
 |-  (. ph ->. ps ).
2 e102.2
 |-  ch
3 e102.3
 |-  (. ph ,. th ->. ta ).
4 e102.4
 |-  ( ps -> ( ch -> ( ta -> et ) ) )
5 2 vd01
 |-  (. ph ->. ch ).
6 1 5 3 4 e112
 |-  (. ph ,. th ->. et ).