Metamath Proof Explorer


Theorem e11

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e11.1
|- (. ph ->. ps ).
e11.2
|- (. ph ->. ch ).
e11.3
|- ( ps -> ( ch -> th ) )
Assertion e11
|- (. ph ->. th ).

Proof

Step Hyp Ref Expression
1 e11.1
 |-  (. ph ->. ps ).
2 e11.2
 |-  (. ph ->. ch ).
3 e11.3
 |-  ( ps -> ( ch -> th ) )
4 3 a1i
 |-  ( ps -> ( ps -> ( ch -> th ) ) )
5 1 1 2 4 e111
 |-  (. ph ->. th ).