Metamath Proof Explorer


Theorem e110

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e110.1
|- (. ph ->. ps ).
e110.2
|- (. ph ->. ch ).
e110.3
|- th
e110.4
|- ( ps -> ( ch -> ( th -> ta ) ) )
Assertion e110
|- (. ph ->. ta ).

Proof

Step Hyp Ref Expression
1 e110.1
 |-  (. ph ->. ps ).
2 e110.2
 |-  (. ph ->. ch ).
3 e110.3
 |-  th
4 e110.4
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
5 3 vd01
 |-  (. ph ->. th ).
6 1 2 5 4 e111
 |-  (. ph ->. ta ).