Metamath Proof Explorer


Theorem e1111

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1111.1
|- (. ph ->. ps ).
e1111.2
|- (. ph ->. ch ).
e1111.3
|- (. ph ->. th ).
e1111.4
|- (. ph ->. ta ).
e1111.5
|- ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) )
Assertion e1111
|- (. ph ->. et ).

Proof

Step Hyp Ref Expression
1 e1111.1
 |-  (. ph ->. ps ).
2 e1111.2
 |-  (. ph ->. ch ).
3 e1111.3
 |-  (. ph ->. th ).
4 e1111.4
 |-  (. ph ->. ta ).
5 e1111.5
 |-  ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) )
6 1 in1
 |-  ( ph -> ps )
7 2 in1
 |-  ( ph -> ch )
8 3 in1
 |-  ( ph -> th )
9 4 in1
 |-  ( ph -> ta )
10 6 7 8 9 5 ee1111
 |-  ( ph -> et )
11 10 dfvd1ir
 |-  (. ph ->. et ).