Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e1111.1 | |- (. ph ->. ps ). | |
| e1111.2 | |- (. ph ->. ch ). | ||
| e1111.3 | |- (. ph ->. th ). | ||
| e1111.4 | |- (. ph ->. ta ). | ||
| e1111.5 | |- ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) | ||
| Assertion | e1111 | |- (. ph ->. et ). | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e1111.1 | |- (. ph ->. ps ). | |
| 2 | e1111.2 | |- (. ph ->. ch ). | |
| 3 | e1111.3 | |- (. ph ->. th ). | |
| 4 | e1111.4 | |- (. ph ->. ta ). | |
| 5 | e1111.5 | |- ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) | |
| 6 | 1 | in1 | |- ( ph -> ps ) | 
| 7 | 2 | in1 | |- ( ph -> ch ) | 
| 8 | 3 | in1 | |- ( ph -> th ) | 
| 9 | 4 | in1 | |- ( ph -> ta ) | 
| 10 | 6 7 8 9 5 | ee1111 | |- ( ph -> et ) | 
| 11 | 10 | dfvd1ir | |- (. ph ->. et ). |