Metamath Proof Explorer


Theorem e11an

Description: Conjunction form of e11 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e11an.1
|- (. ph ->. ps ).
e11an.2
|- (. ph ->. ch ).
e11an.3
|- ( ( ps /\ ch ) -> th )
Assertion e11an
|- (. ph ->. th ).

Proof

Step Hyp Ref Expression
1 e11an.1
 |-  (. ph ->. ps ).
2 e11an.2
 |-  (. ph ->. ch ).
3 e11an.3
 |-  ( ( ps /\ ch ) -> th )
4 3 ex
 |-  ( ps -> ( ch -> th ) )
5 1 2 4 e11
 |-  (. ph ->. th ).