Metamath Proof Explorer


Theorem e120

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e120.1
|- (. ph ->. ps ).
e120.2
|- (. ph ,. ch ->. th ).
e120.3
|- ta
e120.4
|- ( ps -> ( th -> ( ta -> et ) ) )
Assertion e120
|- (. ph ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e120.1
 |-  (. ph ->. ps ).
2 e120.2
 |-  (. ph ,. ch ->. th ).
3 e120.3
 |-  ta
4 e120.4
 |-  ( ps -> ( th -> ( ta -> et ) ) )
5 1 vd12
 |-  (. ph ,. ch ->. ps ).
6 5 2 3 4 e220
 |-  (. ph ,. ch ->. et ).