Metamath Proof Explorer


Theorem e121

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e121.1
|- (. ph ->. ps ).
e121.2
|- (. ph ,. ch ->. th ).
e121.3
|- (. ph ->. ta ).
e121.4
|- ( ps -> ( th -> ( ta -> et ) ) )
Assertion e121
|- (. ph ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e121.1
 |-  (. ph ->. ps ).
2 e121.2
 |-  (. ph ,. ch ->. th ).
3 e121.3
 |-  (. ph ->. ta ).
4 e121.4
 |-  ( ps -> ( th -> ( ta -> et ) ) )
5 1 vd12
 |-  (. ph ,. ch ->. ps ).
6 3 vd12
 |-  (. ph ,. ch ->. ta ).
7 5 2 6 4 e222
 |-  (. ph ,. ch ->. et ).