Metamath Proof Explorer


Theorem e12an

Description: Conjunction form of e12 (see syl6an ). (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e12an.1
|- (. ph ->. ps ).
e12an.2
|- (. ph ,. ch ->. th ).
e12an.3
|- ( ( ps /\ th ) -> ta )
Assertion e12an
|- (. ph ,. ch ->. ta ).

Proof

Step Hyp Ref Expression
1 e12an.1
 |-  (. ph ->. ps ).
2 e12an.2
 |-  (. ph ,. ch ->. th ).
3 e12an.3
 |-  ( ( ps /\ th ) -> ta )
4 3 ex
 |-  ( ps -> ( th -> ta ) )
5 1 2 4 e12
 |-  (. ph ,. ch ->. ta ).