Metamath Proof Explorer


Theorem e13

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e13.1
|- (. ph ->. ps ).
e13.2
|- (. ph ,. ch ,. th ->. ta ).
e13.3
|- ( ps -> ( ta -> et ) )
Assertion e13
|- (. ph ,. ch ,. th ->. et ).

Proof

Step Hyp Ref Expression
1 e13.1
 |-  (. ph ->. ps ).
2 e13.2
 |-  (. ph ,. ch ,. th ->. ta ).
3 e13.3
 |-  ( ps -> ( ta -> et ) )
4 1 vd13
 |-  (. ph ,. ch ,. th ->. ps ).
5 4 2 3 e33
 |-  (. ph ,. ch ,. th ->. et ).