Metamath Proof Explorer


Theorem e1a

Description: A Virtual deduction elimination rule. syl is e1a without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1a.1
|- (. ph ->. ps ).
e1a.2
|- ( ps -> ch )
Assertion e1a
|- (. ph ->. ch ).

Proof

Step Hyp Ref Expression
1 e1a.1
 |-  (. ph ->. ps ).
2 e1a.2
 |-  ( ps -> ch )
3 1 in1
 |-  ( ph -> ps )
4 3 2 syl
 |-  ( ph -> ch )
5 4 dfvd1ir
 |-  (. ph ->. ch ).