Metamath Proof Explorer


Theorem e1bi

Description: Biconditional form of e1a . sylib is e1bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1bi.1
|- (. ph ->. ps ).
e1bi.2
|- ( ps <-> ch )
Assertion e1bi
|- (. ph ->. ch ).

Proof

Step Hyp Ref Expression
1 e1bi.1
 |-  (. ph ->. ps ).
2 e1bi.2
 |-  ( ps <-> ch )
3 2 biimpi
 |-  ( ps -> ch )
4 1 3 e1a
 |-  (. ph ->. ch ).