Metamath Proof Explorer


Theorem e2

Description: A virtual deduction elimination rule. syl6 is e2 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e2.1
|- (. ph ,. ps ->. ch ).
e2.2
|- ( ch -> th )
Assertion e2
|- (. ph ,. ps ->. th ).

Proof

Step Hyp Ref Expression
1 e2.1
 |-  (. ph ,. ps ->. ch ).
2 e2.2
 |-  ( ch -> th )
3 1 dfvd2i
 |-  ( ph -> ( ps -> ch ) )
4 3 2 syl6
 |-  ( ph -> ( ps -> th ) )
5 4 dfvd2ir
 |-  (. ph ,. ps ->. th ).