Metamath Proof Explorer


Theorem e201

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e201.1
|- (. ph ,. ps ->. ch ).
e201.2
|- th
e201.3
|- (. ph ->. ta ).
e201.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion e201
|- (. ph ,. ps ->. et ).

Proof

Step Hyp Ref Expression
1 e201.1
 |-  (. ph ,. ps ->. ch ).
2 e201.2
 |-  th
3 e201.3
 |-  (. ph ->. ta ).
4 e201.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 vd01
 |-  (. ph ->. th ).
6 1 5 3 4 e211
 |-  (. ph ,. ps ->. et ).