Metamath Proof Explorer


Theorem e210

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e210.1
|- (. ph ,. ps ->. ch ).
e210.2
|- (. ph ->. th ).
e210.3
|- ta
e210.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion e210
|- (. ph ,. ps ->. et ).

Proof

Step Hyp Ref Expression
1 e210.1
 |-  (. ph ,. ps ->. ch ).
2 e210.2
 |-  (. ph ->. th ).
3 e210.3
 |-  ta
4 e210.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 3 vd01
 |-  (. ph ->. ta ).
6 1 2 5 4 e211
 |-  (. ph ,. ps ->. et ).