Metamath Proof Explorer


Theorem e211

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e211.1
|- (. ph ,. ps ->. ch ).
e211.2
|- (. ph ->. th ).
e211.3
|- (. ph ->. ta ).
e211.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion e211
|- (. ph ,. ps ->. et ).

Proof

Step Hyp Ref Expression
1 e211.1
 |-  (. ph ,. ps ->. ch ).
2 e211.2
 |-  (. ph ->. th ).
3 e211.3
 |-  (. ph ->. ta ).
4 e211.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 vd12
 |-  (. ph ,. ps ->. th ).
6 3 vd12
 |-  (. ph ,. ps ->. ta ).
7 1 5 6 4 e222
 |-  (. ph ,. ps ->. et ).