Metamath Proof Explorer


Theorem e21an

Description: Conjunction form of e21 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e21an.1
|- (. ph ,. ps ->. ch ).
e21an.2
|- (. ph ->. th ).
e21an.3
|- ( ( ch /\ th ) -> ta )
Assertion e21an
|- (. ph ,. ps ->. ta ).

Proof

Step Hyp Ref Expression
1 e21an.1
 |-  (. ph ,. ps ->. ch ).
2 e21an.2
 |-  (. ph ->. th ).
3 e21an.3
 |-  ( ( ch /\ th ) -> ta )
4 3 ex
 |-  ( ch -> ( th -> ta ) )
5 1 2 4 e21
 |-  (. ph ,. ps ->. ta ).