Metamath Proof Explorer


Theorem e22

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e22.1
|- (. ph ,. ps ->. ch ).
e22.2
|- (. ph ,. ps ->. th ).
e22.3
|- ( ch -> ( th -> ta ) )
Assertion e22
|- (. ph ,. ps ->. ta ).

Proof

Step Hyp Ref Expression
1 e22.1
 |-  (. ph ,. ps ->. ch ).
2 e22.2
 |-  (. ph ,. ps ->. th ).
3 e22.3
 |-  ( ch -> ( th -> ta ) )
4 3 a1i
 |-  ( ch -> ( ch -> ( th -> ta ) ) )
5 1 1 2 4 e222
 |-  (. ph ,. ps ->. ta ).