Metamath Proof Explorer


Theorem e222

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e222.1
|- (. ph ,. ps ->. ch ).
e222.2
|- (. ph ,. ps ->. th ).
e222.3
|- (. ph ,. ps ->. ta ).
e222.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion e222
|- (. ph ,. ps ->. et ).

Proof

Step Hyp Ref Expression
1 e222.1
 |-  (. ph ,. ps ->. ch ).
2 e222.2
 |-  (. ph ,. ps ->. th ).
3 e222.3
 |-  (. ph ,. ps ->. ta ).
4 e222.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 3 dfvd2i
 |-  ( ph -> ( ps -> ta ) )
6 5 imp
 |-  ( ( ph /\ ps ) -> ta )
7 1 dfvd2i
 |-  ( ph -> ( ps -> ch ) )
8 7 imp
 |-  ( ( ph /\ ps ) -> ch )
9 2 dfvd2i
 |-  ( ph -> ( ps -> th ) )
10 9 imp
 |-  ( ( ph /\ ps ) -> th )
11 8 10 4 syl2im
 |-  ( ( ph /\ ps ) -> ( ( ph /\ ps ) -> ( ta -> et ) ) )
12 11 pm2.43i
 |-  ( ( ph /\ ps ) -> ( ta -> et ) )
13 6 12 syl5com
 |-  ( ( ph /\ ps ) -> ( ( ph /\ ps ) -> et ) )
14 13 pm2.43i
 |-  ( ( ph /\ ps ) -> et )
15 14 ex
 |-  ( ph -> ( ps -> et ) )
16 15 dfvd2ir
 |-  (. ph ,. ps ->. et ).