Metamath Proof Explorer


Theorem e223

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e223.1
|- (. ph ,. ps ->. ch ).
e223.2
|- (. ph ,. ps ->. th ).
e223.3
|- (. ph ,. ps ,. ta ->. et ).
e223.4
|- ( ch -> ( th -> ( et -> ze ) ) )
Assertion e223
|- (. ph ,. ps ,. ta ->. ze ).

Proof

Step Hyp Ref Expression
1 e223.1
 |-  (. ph ,. ps ->. ch ).
2 e223.2
 |-  (. ph ,. ps ->. th ).
3 e223.3
 |-  (. ph ,. ps ,. ta ->. et ).
4 e223.4
 |-  ( ch -> ( th -> ( et -> ze ) ) )
5 1 in2
 |-  (. ph ->. ( ps -> ch ) ).
6 5 in1
 |-  ( ph -> ( ps -> ch ) )
7 2 in2
 |-  (. ph ->. ( ps -> th ) ).
8 7 in1
 |-  ( ph -> ( ps -> th ) )
9 3 in3
 |-  (. ph ,. ps ->. ( ta -> et ) ).
10 9 in2
 |-  (. ph ->. ( ps -> ( ta -> et ) ) ).
11 10 in1
 |-  ( ph -> ( ps -> ( ta -> et ) ) )
12 6 8 11 4 ee223
 |-  ( ph -> ( ps -> ( ta -> ze ) ) )
13 12 dfvd3ir
 |-  (. ph ,. ps ,. ta ->. ze ).