Metamath Proof Explorer


Theorem e233

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e233.1
|- (. ph ,. ps ->. ch ).
e233.2
|- (. ph ,. ps ,. th ->. ta ).
e233.3
|- (. ph ,. ps ,. th ->. et ).
e233.4
|- ( ch -> ( ta -> ( et -> ze ) ) )
Assertion e233
|- (. ph ,. ps ,. th ->. ze ).

Proof

Step Hyp Ref Expression
1 e233.1
 |-  (. ph ,. ps ->. ch ).
2 e233.2
 |-  (. ph ,. ps ,. th ->. ta ).
3 e233.3
 |-  (. ph ,. ps ,. th ->. et ).
4 e233.4
 |-  ( ch -> ( ta -> ( et -> ze ) ) )
5 1 dfvd2i
 |-  ( ph -> ( ps -> ch ) )
6 2 dfvd3i
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
7 3 dfvd3i
 |-  ( ph -> ( ps -> ( th -> et ) ) )
8 5 6 7 4 ee233
 |-  ( ph -> ( ps -> ( th -> ze ) ) )
9 8 dfvd3ir
 |-  (. ph ,. ps ,. th ->. ze ).