Metamath Proof Explorer


Theorem e32an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e32an.1
|- (. ph ,. ps ,. ch ->. th ).
e32an.2
|- (. ph ,. ps ->. ta ).
e32an.3
|- ( ( th /\ ta ) -> et )
Assertion e32an
|- (. ph ,. ps ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e32an.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 e32an.2
 |-  (. ph ,. ps ->. ta ).
3 e32an.3
 |-  ( ( th /\ ta ) -> et )
4 3 ex
 |-  ( th -> ( ta -> et ) )
5 1 2 4 e32
 |-  (. ph ,. ps ,. ch ->. et ).