Metamath Proof Explorer


Theorem e33

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e33.1
|- (. ph ,. ps ,. ch ->. th ).
e33.2
|- (. ph ,. ps ,. ch ->. ta ).
e33.3
|- ( th -> ( ta -> et ) )
Assertion e33
|- (. ph ,. ps ,. ch ->. et ).

Proof

Step Hyp Ref Expression
1 e33.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 e33.2
 |-  (. ph ,. ps ,. ch ->. ta ).
3 e33.3
 |-  ( th -> ( ta -> et ) )
4 3 a1i
 |-  ( th -> ( th -> ( ta -> et ) ) )
5 1 1 2 4 e333
 |-  (. ph ,. ps ,. ch ->. et ).