Step |
Hyp |
Ref |
Expression |
1 |
|
e333.1 |
|- (. ph ,. ps ,. ch ->. th ). |
2 |
|
e333.2 |
|- (. ph ,. ps ,. ch ->. ta ). |
3 |
|
e333.3 |
|- (. ph ,. ps ,. ch ->. et ). |
4 |
|
e333.4 |
|- ( th -> ( ta -> ( et -> ze ) ) ) |
5 |
3
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> et ) ) ) |
6 |
5
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> et ) |
7 |
1
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> th ) ) ) |
8 |
7
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> th ) |
9 |
2
|
dfvd3i |
|- ( ph -> ( ps -> ( ch -> ta ) ) ) |
10 |
9
|
3imp |
|- ( ( ph /\ ps /\ ch ) -> ta ) |
11 |
8 10 4
|
syl2im |
|- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) ) |
12 |
11
|
pm2.43i |
|- ( ( ph /\ ps /\ ch ) -> ( et -> ze ) ) |
13 |
6 12
|
syl5com |
|- ( ( ph /\ ps /\ ch ) -> ( ( ph /\ ps /\ ch ) -> ze ) ) |
14 |
13
|
pm2.43i |
|- ( ( ph /\ ps /\ ch ) -> ze ) |
15 |
14
|
3exp |
|- ( ph -> ( ps -> ( ch -> ze ) ) ) |
16 |
15
|
dfvd3ir |
|- (. ph ,. ps ,. ch ->. ze ). |