Metamath Proof Explorer


Theorem e3bi

Description: Biconditional form of e3 . syl8ib is e3bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e3bi.1
|- (. ph ,. ps ,. ch ->. th ).
e3bi.2
|- ( th <-> ta )
Assertion e3bi
|- (. ph ,. ps ,. ch ->. ta ).

Proof

Step Hyp Ref Expression
1 e3bi.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 e3bi.2
 |-  ( th <-> ta )
3 2 biimpi
 |-  ( th -> ta )
4 1 3 e3
 |-  (. ph ,. ps ,. ch ->. ta ).