Metamath Proof Explorer


Theorem e3bir

Description: Right biconditional form of e3 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e3bir.1
|- (. ph ,. ps ,. ch ->. th ).
e3bir.2
|- ( ta <-> th )
Assertion e3bir
|- (. ph ,. ps ,. ch ->. ta ).

Proof

Step Hyp Ref Expression
1 e3bir.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 e3bir.2
 |-  ( ta <-> th )
3 2 biimpri
 |-  ( th -> ta )
4 1 3 e3
 |-  (. ph ,. ps ,. ch ->. ta ).