Description: Right biconditional form of e3 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e3bir.1 | |- (. ph ,. ps ,. ch ->. th ). | |
| e3bir.2 | |- ( ta <-> th ) | ||
| Assertion | e3bir | |- (. ph ,. ps ,. ch ->. ta ). | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e3bir.1 | |- (. ph ,. ps ,. ch ->. th ). | |
| 2 | e3bir.2 | |- ( ta <-> th ) | |
| 3 | 2 | biimpri | |- ( th -> ta ) | 
| 4 | 1 3 | e3 | |- (. ph ,. ps ,. ch ->. ta ). |