Metamath Proof Explorer


Theorem ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses ecase.1
|- ( -. ph -> ch )
ecase.2
|- ( -. ps -> ch )
ecase.3
|- ( ( ph /\ ps ) -> ch )
Assertion ecase
|- ch

Proof

Step Hyp Ref Expression
1 ecase.1
 |-  ( -. ph -> ch )
2 ecase.2
 |-  ( -. ps -> ch )
3 ecase.3
 |-  ( ( ph /\ ps ) -> ch )
4 3 ex
 |-  ( ph -> ( ps -> ch ) )
5 4 1 2 pm2.61nii
 |-  ch