Metamath Proof Explorer


Theorem ecase23d

Description: Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994)

Ref Expression
Hypotheses ecase23d.1
|- ( ph -> -. ch )
ecase23d.2
|- ( ph -> -. th )
ecase23d.3
|- ( ph -> ( ps \/ ch \/ th ) )
Assertion ecase23d
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 ecase23d.1
 |-  ( ph -> -. ch )
2 ecase23d.2
 |-  ( ph -> -. th )
3 ecase23d.3
 |-  ( ph -> ( ps \/ ch \/ th ) )
4 3orass
 |-  ( ( ps \/ ch \/ th ) <-> ( ps \/ ( ch \/ th ) ) )
5 3 4 sylib
 |-  ( ph -> ( ps \/ ( ch \/ th ) ) )
6 ioran
 |-  ( -. ( ch \/ th ) <-> ( -. ch /\ -. th ) )
7 1 2 6 sylanbrc
 |-  ( ph -> -. ( ch \/ th ) )
8 5 7 olcnd
 |-  ( ph -> ps )