Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecase2d.1 | |- ( ph -> ps ) |
|
ecase2d.2 | |- ( ph -> -. ( ps /\ ch ) ) |
||
ecase2d.3 | |- ( ph -> -. ( ps /\ th ) ) |
||
ecase2d.4 | |- ( ph -> ( ta \/ ( ch \/ th ) ) ) |
||
Assertion | ecase2d | |- ( ph -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecase2d.1 | |- ( ph -> ps ) |
|
2 | ecase2d.2 | |- ( ph -> -. ( ps /\ ch ) ) |
|
3 | ecase2d.3 | |- ( ph -> -. ( ps /\ th ) ) |
|
4 | ecase2d.4 | |- ( ph -> ( ta \/ ( ch \/ th ) ) ) |
|
5 | 1 2 | mpnanrd | |- ( ph -> -. ch ) |
6 | 1 3 | mpnanrd | |- ( ph -> -. th ) |
7 | 4 | ord | |- ( ph -> ( -. ta -> ( ch \/ th ) ) ) |
8 | 5 6 7 | mtord | |- ( ph -> -. -. ta ) |
9 | 8 | notnotrd | |- ( ph -> ta ) |