Metamath Proof Explorer


Theorem ecase2d

Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 19-Sep-2024)

Ref Expression
Hypotheses ecase2d.1
|- ( ph -> ps )
ecase2d.2
|- ( ph -> -. ( ps /\ ch ) )
ecase2d.3
|- ( ph -> -. ( ps /\ th ) )
ecase2d.4
|- ( ph -> ( ta \/ ( ch \/ th ) ) )
Assertion ecase2d
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 ecase2d.1
 |-  ( ph -> ps )
2 ecase2d.2
 |-  ( ph -> -. ( ps /\ ch ) )
3 ecase2d.3
 |-  ( ph -> -. ( ps /\ th ) )
4 ecase2d.4
 |-  ( ph -> ( ta \/ ( ch \/ th ) ) )
5 1 2 mpnanrd
 |-  ( ph -> -. ch )
6 1 3 mpnanrd
 |-  ( ph -> -. th )
7 4 ord
 |-  ( ph -> ( -. ta -> ( ch \/ th ) ) )
8 5 6 7 mtord
 |-  ( ph -> -. -. ta )
9 8 notnotrd
 |-  ( ph -> ta )