Metamath Proof Explorer


Theorem ecase3

Description: Inference for elimination by cases. (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 26-Nov-2012)

Ref Expression
Hypotheses ecase3.1
|- ( ph -> ch )
ecase3.2
|- ( ps -> ch )
ecase3.3
|- ( -. ( ph \/ ps ) -> ch )
Assertion ecase3
|- ch

Proof

Step Hyp Ref Expression
1 ecase3.1
 |-  ( ph -> ch )
2 ecase3.2
 |-  ( ps -> ch )
3 ecase3.3
 |-  ( -. ( ph \/ ps ) -> ch )
4 1 2 jaoi
 |-  ( ( ph \/ ps ) -> ch )
5 4 3 pm2.61i
 |-  ch