Metamath Proof Explorer


Theorem ecase3ad

Description: Deduction for elimination by cases. (Contributed by NM, 24-May-2013) (Proof shortened by Wolf Lammen, 20-Sep-2024)

Ref Expression
Hypotheses ecase3ad.1
|- ( ph -> ( ps -> th ) )
ecase3ad.2
|- ( ph -> ( ch -> th ) )
ecase3ad.3
|- ( ph -> ( ( -. ps /\ -. ch ) -> th ) )
Assertion ecase3ad
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 ecase3ad.1
 |-  ( ph -> ( ps -> th ) )
2 ecase3ad.2
 |-  ( ph -> ( ch -> th ) )
3 ecase3ad.3
 |-  ( ph -> ( ( -. ps /\ -. ch ) -> th ) )
4 1 imp
 |-  ( ( ph /\ ps ) -> th )
5 2 imp
 |-  ( ( ph /\ ch ) -> th )
6 3 imp
 |-  ( ( ph /\ ( -. ps /\ -. ch ) ) -> th )
7 4 5 6 pm2.61ddan
 |-  ( ph -> th )