Metamath Proof Explorer


Theorem ecase3adOLD

Description: Obsolete version of ecase3ad as of 20-Sep-2024. (Contributed by NM, 24-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ecase3ad.1
|- ( ph -> ( ps -> th ) )
ecase3ad.2
|- ( ph -> ( ch -> th ) )
ecase3ad.3
|- ( ph -> ( ( -. ps /\ -. ch ) -> th ) )
Assertion ecase3adOLD
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 ecase3ad.1
 |-  ( ph -> ( ps -> th ) )
2 ecase3ad.2
 |-  ( ph -> ( ch -> th ) )
3 ecase3ad.3
 |-  ( ph -> ( ( -. ps /\ -. ch ) -> th ) )
4 notnotr
 |-  ( -. -. ps -> ps )
5 4 1 syl5
 |-  ( ph -> ( -. -. ps -> th ) )
6 notnotr
 |-  ( -. -. ch -> ch )
7 6 2 syl5
 |-  ( ph -> ( -. -. ch -> th ) )
8 5 7 3 ecased
 |-  ( ph -> th )