Metamath Proof Explorer


Theorem ecase3d

Description: Deduction for elimination by cases. (Contributed by NM, 2-May-1996) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses ecase3d.1
|- ( ph -> ( ps -> th ) )
ecase3d.2
|- ( ph -> ( ch -> th ) )
ecase3d.3
|- ( ph -> ( -. ( ps \/ ch ) -> th ) )
Assertion ecase3d
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 ecase3d.1
 |-  ( ph -> ( ps -> th ) )
2 ecase3d.2
 |-  ( ph -> ( ch -> th ) )
3 ecase3d.3
 |-  ( ph -> ( -. ( ps \/ ch ) -> th ) )
4 1 2 jaod
 |-  ( ph -> ( ( ps \/ ch ) -> th ) )
5 4 3 pm2.61d
 |-  ( ph -> th )