Metamath Proof Explorer


Theorem ecased

Description: Deduction for elimination by cases. (Contributed by NM, 8-Oct-2012)

Ref Expression
Hypotheses ecased.1
|- ( ph -> ( -. ps -> th ) )
ecased.2
|- ( ph -> ( -. ch -> th ) )
ecased.3
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion ecased
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 ecased.1
 |-  ( ph -> ( -. ps -> th ) )
2 ecased.2
 |-  ( ph -> ( -. ch -> th ) )
3 ecased.3
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
4 pm3.11
 |-  ( -. ( -. ps \/ -. ch ) -> ( ps /\ ch ) )
5 4 3 syl5
 |-  ( ph -> ( -. ( -. ps \/ -. ch ) -> th ) )
6 1 2 5 ecase3d
 |-  ( ph -> th )