| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. dom R -> A e. _V ) |
| 2 |
|
n0 |
|- ( [ A ] R =/= (/) <-> E. x x e. [ A ] R ) |
| 3 |
|
ecexr |
|- ( x e. [ A ] R -> A e. _V ) |
| 4 |
3
|
exlimiv |
|- ( E. x x e. [ A ] R -> A e. _V ) |
| 5 |
2 4
|
sylbi |
|- ( [ A ] R =/= (/) -> A e. _V ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
|
elecg |
|- ( ( x e. _V /\ A e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
| 8 |
6 7
|
mpan |
|- ( A e. _V -> ( x e. [ A ] R <-> A R x ) ) |
| 9 |
8
|
exbidv |
|- ( A e. _V -> ( E. x x e. [ A ] R <-> E. x A R x ) ) |
| 10 |
2
|
a1i |
|- ( A e. _V -> ( [ A ] R =/= (/) <-> E. x x e. [ A ] R ) ) |
| 11 |
|
eldmg |
|- ( A e. _V -> ( A e. dom R <-> E. x A R x ) ) |
| 12 |
9 10 11
|
3bitr4rd |
|- ( A e. _V -> ( A e. dom R <-> [ A ] R =/= (/) ) ) |
| 13 |
1 5 12
|
pm5.21nii |
|- ( A e. dom R <-> [ A ] R =/= (/) ) |