| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- [ B ] R = [ B ] R |
| 2 |
|
eceq1 |
|- ( x = B -> [ x ] R = [ B ] R ) |
| 3 |
2
|
rspceeqv |
|- ( ( B e. A /\ [ B ] R = [ B ] R ) -> E. x e. A [ B ] R = [ x ] R ) |
| 4 |
1 3
|
mpan2 |
|- ( B e. A -> E. x e. A [ B ] R = [ x ] R ) |
| 5 |
4
|
adantl |
|- ( ( ( R |` A ) e. V /\ B e. A ) -> E. x e. A [ B ] R = [ x ] R ) |
| 6 |
|
elecex |
|- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. _V ) ) |
| 7 |
6
|
imp |
|- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. _V ) |
| 8 |
|
elqsg |
|- ( [ B ] R e. _V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
| 9 |
7 8
|
syl |
|- ( ( ( R |` A ) e. V /\ B e. A ) -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
| 10 |
5 9
|
mpbird |
|- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |