Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | ecelqsdm | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsn0 | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> [ B ] R =/= (/) ) |
|
2 | ecdmn0 | |- ( B e. dom R <-> [ B ] R =/= (/) ) |
|
3 | 1 2 | sylibr | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. dom R ) |
4 | simpl | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> dom R = A ) |
|
5 | 3 4 | eleqtrd | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) |