Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- [ B ] R = [ B ] R |
2 |
|
eceq1 |
|- ( x = B -> [ x ] R = [ B ] R ) |
3 |
2
|
rspceeqv |
|- ( ( B e. A /\ [ B ] R = [ B ] R ) -> E. x e. A [ B ] R = [ x ] R ) |
4 |
1 3
|
mpan2 |
|- ( B e. A -> E. x e. A [ B ] R = [ x ] R ) |
5 |
|
ecexg |
|- ( R e. V -> [ B ] R e. _V ) |
6 |
|
elqsg |
|- ( [ B ] R e. _V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
7 |
5 6
|
syl |
|- ( R e. V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) |
8 |
7
|
biimpar |
|- ( ( R e. V /\ E. x e. A [ B ] R = [ x ] R ) -> [ B ] R e. ( A /. R ) ) |
9 |
4 8
|
sylan2 |
|- ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |