Metamath Proof Explorer


Theorem ecelqsg

Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion ecelqsg
|- ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  [ B ] R = [ B ] R
2 eceq1
 |-  ( x = B -> [ x ] R = [ B ] R )
3 2 rspceeqv
 |-  ( ( B e. A /\ [ B ] R = [ B ] R ) -> E. x e. A [ B ] R = [ x ] R )
4 1 3 mpan2
 |-  ( B e. A -> E. x e. A [ B ] R = [ x ] R )
5 ecexg
 |-  ( R e. V -> [ B ] R e. _V )
6 elqsg
 |-  ( [ B ] R e. _V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) )
7 5 6 syl
 |-  ( R e. V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) )
8 7 biimpar
 |-  ( ( R e. V /\ E. x e. A [ B ] R = [ x ] R ) -> [ B ] R e. ( A /. R ) )
9 4 8 sylan2
 |-  ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) )