| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  [ B ] R = [ B ] R | 
						
							| 2 |  | eceq1 |  |-  ( x = B -> [ x ] R = [ B ] R ) | 
						
							| 3 | 2 | rspceeqv |  |-  ( ( B e. A /\ [ B ] R = [ B ] R ) -> E. x e. A [ B ] R = [ x ] R ) | 
						
							| 4 | 1 3 | mpan2 |  |-  ( B e. A -> E. x e. A [ B ] R = [ x ] R ) | 
						
							| 5 |  | ecexg |  |-  ( R e. V -> [ B ] R e. _V ) | 
						
							| 6 |  | elqsg |  |-  ( [ B ] R e. _V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( R e. V -> ( [ B ] R e. ( A /. R ) <-> E. x e. A [ B ] R = [ x ] R ) ) | 
						
							| 8 | 7 | biimpar |  |-  ( ( R e. V /\ E. x e. A [ B ] R = [ x ] R ) -> [ B ] R e. ( A /. R ) ) | 
						
							| 9 | 4 8 | sylan2 |  |-  ( ( R e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |